skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Li, Jiannan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Foundation models are rapidly improving the capability of robots in performing everyday tasks autonomously such as meal preparation, yet robots will still need to be instructed by humans due to model performance, the difficulty of capturing user preferences, and the need for user agency. Robots can be instructed using various methods-natural language conveys immediate instructions but can be abstract or ambiguous, whereas end-user programming supports longer-horizon tasks but interfaces face difficulties in capturing user intent. In this work, we propose using direct manipulation of images as an alternative paradigm to instruct robots, and introduce a specific instantiation called ImageInThat which allows users to perform direct manipulation on images in a timeline-style interface to generate robot instructions. Through a user study, we demonstrate the efficacy of ImageInThat to instruct robots in kitchen manipulation tasks, comparing it to a text-based natural language instruction method. The results show that participants were faster with ImageInThat and preferred to use it over the text-based method. Supplementary material including code can be found at: https://image-in-that.github.io/. 
    more » « less
    Free, publicly-accessible full text available March 4, 2026